The Brezis-Nirenberg result for the fractional Laplacian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE BREZIS-NIRENBERG PROBLEM FOR THE FRACTIONAL p-LAPLACIAN

We obtain nontrivial solutions to the Brezis-Nirenberg problem for the fractional p-Laplacian operator, extending some results in the literature for the fractional Laplacian. The quasilinear case presents two serious new difficulties. First an explicit formula for a minimizer in the fractional Sobolev inequality is not available when p 6= 2. We get around this difficulty by working with certain...

متن کامل

The Brezis-nirenberg Problem for Nonlocal Systems

By means of variational methods we investigate existence, non-existence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and interacting, in a suitable sense, with the spectrum of the operator.

متن کامل

The Brezis–nirenberg Problem for the Laplacian with a Singular Drift in R and S

We consider the Brezis–Nirenberg problem for the Laplacian with a singular drift for a (geodesic) ball in both R and S, 3 ≤ n ≤ 5. The singular drift we consider derives from a potential which is symmetric around the center of the (geodesic) ball. Here the potential is given by a parameter (δ say) times the logarithm of the distance to the center of the ball. In both cases we determine the exac...

متن کامل

The Brezis-nirenberg Type Problem Involving the Square Root of the Laplacian

We establish existence and non-existence results to the BrezisNirenberg type problem involving the square root of the Laplacian in a bounded domain with zero Dirichlet boundary condition.

متن کامل

A Note on Borderline Brezis-nirenberg Type Problems

where LAu = div(A(x)∇u) and La,pu = div(a(x)|∇u| ∇u) are, respectively, linear and quasilinear uniformly elliptic operators in divergence form in a non-smooth bounded open subset Ω of R, 1 < p < n, p∗ = np/(n − p) is the critical Sobolev exponent and λ is a real parameter. Both problems have been quite studied when the ellipticity of LA and La,p concentrate in the interior of Ω. We here focus o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2014

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2014-05884-4